ode45

编辑:互学吧互动百科 时间:2019-09-22 06:16:42
编辑 锁定
ode45,常微分方程的数值求解。MATLAB提供了求常微分方程数值解的函数。当难以求得微分方程的解析解时,可以求其数值解,Matlab中求微分方程数值解的函数有七个:ode45,ode23,ode113,ode15s,ode23s,ode23t,ode23tb 。
外文名
ode45
用    于
解微分方程的功能函数
首选方法
解决数值解问题的首选方法
包    含
Nonstiff(非刚性)常微分方程

ode45概述

编辑
ode是Matlab专门用于解微分方程的功能函数。该求解器有变步长(variable-step)和定步长(fixed-step)两种类型。不同类型有着不同的求解器,其中ode45求解器属于变步长的一种,采用Runge-Kutta算法;其他采用相同算法的变步长求解器还有ode23。
ode45表示采用四阶-五阶Runge-Kutta算法,它用4阶方法提供候选解,5阶方法控制误差,是一种自适应步长(变步长)的常微分方程数值解法,其整体截断误差为(Δx)^5。解决的是Nonstiff(非刚性)常微分方程。
ode45是解决数值解问题的首选方法,若长时间没结果,应该就是刚性的,可换用ode23试试。

ode45语法

编辑
[T,Y] = ode45(odefun,tspan,y0)
[T,Y] = ode45(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = ode45(odefun,tspan,y0,options)
sol = ode45(odefun,[t0tf],y0...)
[T,Y] = ode45(odefun,tspan,y0)
odefun 是函数句柄,可以是函数文件名,匿名函数句柄或内联函数
tspan 是区间 [t0 tf] 或者一系列散点[t0,t1,...,tf]
y0 是初始值向量
T 返回列向量的时间点
Y 返回对应T的求解列向量
[T,Y] = ode45(odefun,tspan,y0,options)
options 是求解参数设置,可以用odeset在计算前设定误差,输出参数,事件等
[T,Y,TE,YE,IE] =ode45(odefun,tspan,y0,options)
在设置了事件参数后的对应输出
TE 事件发生时间
YE 事件发生时之答案
IE 事件函数消失时之指针i
sol =ode45(odefun,[t0 tf],y0...)
sol 结构体输出结果

ode45示例

编辑

ode45求解一阶常微分方程

需要求解的一阶常微分方程:
odefun=@(t,y) (y+3*t)/t^2; %定义函数
tspan=[1 4]; %求解区间
y0=-2; %初值
[t,y]=ode45(odefun,tspan,y0);
plot(t,y) %作图
title('t^2y''=y+3t,y(1)=-2,1<t<4')
legend('t^2y''=y+3t')
xlabel('t')
ylabel('y')
% 精确解
% dsolve('t^2*Dy=y+3*t','y(1)=-2')
% ans =一阶求解结果图
% (3*Ei(1) - 2*exp(1))/exp(1/t) - (3*Ei(1/t))/exp(1/t)

ode45求解高阶常微分方程

需要求解的高阶常微分方程:
求解的关键是将高阶转为一阶,odefun的书写.
F(y,y',y''...y(n-1),t)=0用变量替换,y1=y,y2=y'...注意odefun方程定义为行向量
dxdy=[y(1),y(2)....]
程序:
function Testode45
tspan=[3.9 4.0]; %求解区间
y0=[2 8]; %初值
[t,x]=ode45(@odefun,tspan,y0);
plot(t,x(:,1),'-o',t,x(:,2),'-*')
legend('y1','y2')
title('y'' ''=-t*y + e^t*y'' +3sin2t')
xlabel('t')
ylabel('y')
function y=odefun(t,x)
y=zeros(2,1); % 列向量
y(1)=x(2);
y(2)=-t*x(1)+exp(t)*x(2)+3*sin(2*t);
end
end
词条标签:
计算机学 科学 数学 技术 学科